takumaku
  • Architecture
  • Design
  • Lifestyle
  • Products
  • About
takumaku
  • Architecture
  • Design
  • Lifestyle
  • Products
  • About
  • Architecture
  • Buildings
  • Design
  • Lifestyle

How To Build A City That Doesn’t Flood? Turn It Into A Sponge

  • June 26, 2023
  • Anna Marie
Total
0
Shares
0
0
0
0

Water management that prizes lakes and greenery over concrete makes for less flood-prone cities — and prettier ones, too.

From an airplane window, Hainan, an oval-shaped island floating alone in the expanse of the South China Sea, resembles a sea sponge.


Partner with takumaku.com
for your next big idea.
Let us know here.



From our partners:

CITI.IO :: Business. Institutions. Society. Global Political Economy.
CYBERPOGO.COM :: For the Arts, Sciences, and Technology.
DADAHACKS.COM :: Parenting For The Rest Of Us.
ZEDISTA.COM :: Entertainment. Sports. Culture. Escape.
TAKUMAKU.COM :: For The Hearth And Home.
ASTER.CLOUD :: From The Cloud And Beyond.
LIWAIWAI.COM :: Intelligence, Inside and Outside.
GLOBALCLOUDPLATFORMS.COM :: For The World's Computing Needs.
FIREGULAMAN.COM :: For The Fire In The Belly Of The Coder.
ASTERCASTER.COM :: Supra Astra. Beyond The Stars.
BARTDAY.COM :: Prosperity For Everyone.

In reality, the Chinese province genuinely is a kind of engineered urban sponge, thanks to its pioneering network of green, nature-based infrastructure capable of absorbing storm floods and soaking up heavy monsoon rains.

“If you want to survive, you have to be spongy,” says Yu Kongjian, dean of Peking University’s College of Architecture and Landscape Architecture, and founder of Turenscape, one of China’s largest landscape architecture firms. “Trying to protect cities with hard, gray infrastructure made of concrete is doomed to fail.”

Over the years, many architects, engineers and city planners have espoused the value of, and need for, effective water management in urban areas. But Kongjian was the first to propose the holistic concept of the “sponge city.”

Terraced wetlands in Hainan's Haikou city.
Terraced wetlands in Haikou, one of Hainan’s two major cities. Credit: Turenscape

The idea is not to install enormous artificial foam structures across urban areas, but rather to create cities filled with natural spaces such as parks, lakes and wetlands — which are capable of absorbing, storing and cleaning rain and floods — as well as smaller tools like bioswales, rain gardens, permeable pavements and green roofs. Such “green and blue infrastructure” is in contrast with the manmade “gray infrastructure” that fills most cities — think concrete walls and hard flood barriers, which cause water to build up on surfaces and limit collection of valuable groundwater for drinking, irrigation and more.

While good water management has always been essential for cities, climate change, which is bringing more extreme rains and floods and causing sea level rise — combined with urban growth into more vulnerable areas — has made it an even bigger priority.

“One of the problems all cities are facing is that as they are growing, they are simply cementing over all the land,” says Asit K. Biswas, an expert in water management and distinguished visiting professor at the University of Glasgow. “So the water that used to percolate to the ground doesn’t anymore. Flooding becomes an issue, and important groundwater isn’t replenished. That is why we need sponge cities.”

This emerging approach to urban water management also soaks up all kinds of other benefits: green, nature-based spaces provide habitat for wildlife and areas for exercise and relaxation (which can boost the physical and mental health of residents), as well as likely increasing the value of surrounding property and the city more widely.

Kongjian’s “sponge city” idea is inspired by the ancient Chinese agricultural approach to water management. For centuries, rural farmers have carved out rice terraces across China’s southwest region and beyond, using basic “cut and fill” methods to cultivate mountainous terrain with water-filled paddies. In Kongjian’s hometown, there were seven water ponds, which helped manage monsoons. Many other civilizations around the world, he adds, also have monsoon- and flood-adapted ways of life.

“This is not just primitive agriculture by valley-dwelling peasants,” he says. “It is a cultural heritage that is built on 5,000 years of water management experience.”

Kongjian’s theory dates back as far as 2003, when he observed that “natural wetlands along rivers can function like sponges to retain water during flooding and recharge water during drought.” But it was a decade later, in the aftermath of floods in the capital Beijing that killed 79 people, that China launched the Sponge City Program with pilots across 16 cities (14 more have been added since). By 2030, China’s sponge cities aim to process 70 percent of rainwater across 80 percent of their land.

Hainan, which frequently suffers from severe floods due to its monsoon climate coupled with the worsening effects of global warming, was picked as one of the project’s leading demonstration sites.

Satellite image of Hainan.
The China Sea surrounds Hainan. Credit: Google Earth

In 2015, the local government and the national Ministry of Housing and Urban and Rural Construction kickstarted efforts to transform the island’s two major cities, Haikou and Sanya. Kongjian and his team began by giving presentations on the “Sponge City” concept and ecological restoration — these were mandatory for officials — and developing a mass public information campaign to gain community support. Crucially, a “water-based ecological infrastructure plan” identified at-risk areas and how to protect them with wetlands, rice paddies, parks and coastal habitats.

In Haikou, which is home to the 23-kilometer-long Meishe River, the concrete flood walls were removed, and the surrounding area was turned into a mangrove restoration project with floodable pedestrian paths running through it. In addition, terraced wetlands were added to help process 6,000 tons of treated wastewater per day, improving the water quality from grade V (the poorest surface water quality) to grade III (non-potable water clean enough to swim in). Similarly, in Sanya, an “interlocking finger design” of waterways was constructed to buffer the force of ocean tides hitting the coast. Green terraces were added, staggered from the 9-meter-high street level down to sea level, with channels known as bioswales used to capture stormwater runoff.

“Inundation has virtually stopped,” says Kongjian.

Other efforts to turn Chinese cities into sponges have also proven effective. A study of Wuhan found its 389 sponge city projects across 38.5 square kilometers have not only reduced flooding, but sequestered 725 tons of CO2 a year, reduced temperatures by more than 3°C (5°F) and more than doubled the value of the land. 

Interlocking finger waterways in Hainan's Sanya city.
Interlocking finger waterways in the city of Sanya. Credit: Turenscape

Adoption of the sponge city model is increasing globally, too. More than 100 “rain gardens” have been built in the Welsh city of Cardiff, which soak up 40,000 square meters of rainwater each year, lessening the burden on the sewer network. Philadelphia’s $4.5 billion Green City, Clean Waters plan, which will run until 2036, is already keeping 2.7 billion gallons of stormwater runoff and sewer overflow out of local waterways. The Orbital Forest of Tirana in Albania will see the city surrounded by a ring of two million trees, which will clean the air, limit urban sprawl and provide flood protection. In the Dutch city of Rotterdam, blue-green roofs have reduced water treatment costs by $75,000 annually and prevented roughly 10,000 tons of CO2 emissions.

Meanwhile, although the Global South is disproportionately suffering the effects of extreme weather, studies show there is an opportunity for cities worldwide to grow sustainably through nature-based infrastructure. A study by design firm Arup found that it is 50 percent more affordable than man-made alternatives, and 28 percent more effective.

Yet there are limits to what a sponge city can withstand. Research published in The Royal Society scientific journal found that while sponge cities should be able to process 1-in-30-year rainfall events, 19 of the 30 pilot cities in China have experienced flooding since 2014. Some 14 million people were impacted by floods in the city of Zhengzhou in 2021. Nearly 400 people died or went missing. 

“Sponge cities can maybe deal with sea level rise of one or two meters, but five meters? No,” admits Kongjian. “But if the sponge city can’t stop it, nothing can. You have to move the city away.”

Part of the problem, according to Faith Chan, head of the School of Geographical Sciences at University of Nottingham Ningbo China, is that the current sponge city efforts are not genuinely citywide. 

“Currently it’s too focused on small-scale green space development to solve the water problem in the ideas of construction,” he says. “The projects shouldn’t just focus on a district or set of apartments. It has to be connected with larger areas.”

Lack of land availability, the need for political support and significant financial cost are also barriers, according to Biswas, who has carried out work in China since the 1980s. “It’s true that retrofitting or reconstructing cities is expensive,” he says. “And while new sponge cities are cheaper, most of the world lives in old cities.”

But Kongjian, whose firm has carried out over 1,000 projects across 200 cities, says that the sponge city model is improving day by day as the evidence base grows. He calls the recent spongification of Bangkok’s Benjakitti Forest Park a “great success” that has already stood up to city flooding.

“This is not something luxury; you have to do it,” he says. “Resiliency is key.”



For enquiries, product placements, sponsorships, and collaborations, connect with us at hello@takumaku.com. We'd love to hear from you!


Our humans need coffee too! Your support is highly appreciated, thank you!

Total
0
Shares
Share 0
Tweet 0
Share 0
Share 0
Anna Marie

Related Topics
  • Agriculture
  • Architecture
  • Climate Change
  • Design
  • Environment
  • floods
  • sea level rise
  • South China Sea
  • Sponge City
Previous Article
  • Architecture
  • Buildings
  • Design

Zoning, Preservation, Climate Change: Connecting The Dots

  • June 26, 2023
  • Taku Maku
View Post
Next Article
  • Tech

Beyond The AI Rabbit Hole. Machines Mimicking. Learning. Outsmarting. 

  • June 27, 2023
  • Dean Marc
View Post
You May Also Like
View Post
  • Buildings
  • Design
  • Housing

The 10 Best Home Property In Finland

  • Taku Maku
  • November 25, 2023
View Post
  • Lifestyle
  • Products
  • Tech

Decode Workweek Style with guzz

  • Aelia Vita
  • November 24, 2023
View Post
  • Architecture
  • Buildings
  • Design
  • Housing
  • Lifestyle

Top 10 Countries With Most Affordable Housing In The World

  • Aelia Vita
  • November 18, 2023
View Post
  • Architecture
  • Design
  • Tech

10 Buildings That Became Embroiled In Legal Battles

  • Taku Maku
  • November 11, 2023
View Post
  • Interior Design
  • Lifestyle
  • Products

Weatherstripping Can Help Lower Your Winter Utility Bills For Under $10

  • Taku Maku
  • November 6, 2023
View Post
  • Architecture
  • Buildings
  • Design

Zaha Hadid’s Science Center Breaks Ground in Singapore

  • Taku Maku
  • November 6, 2023
View Post
  • Housing
  • Lifestyle
  • Products
  • Tech

10 Best And Finest Lighting Manufacturers In 2023

  • Taku Maku
  • October 30, 2023
View Post
  • Architecture
  • Art
  • Design

2024 Color of the Year Picks Unveiled by Paint Leaders Such as Benjamin Moore and Sherwin Williams

  • Taku Maku
  • October 30, 2023
takumaku
  • Architecture
  • Design
  • Lifestyle
  • Products
  • About
a taste of home

Input your search keywords and press Enter.